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BOUNDARY OF MONOTONIC AND OSCILLATORY CONVECTIVE 

STABILITY OF A HORIZONTAL FLUID LAYER 

V. I. Yudovich UDC 536.25:517.958 

The problem of small oscillations of a heat-conducting fluid which occupies a horizon- 
tal layer and is close to mechanical equilibrium is examined here. It is assumed that the 
layer is heated from above, so that the fluid is stably stratified. As is known [I, 2], 
for sufficiently high viscosity, all modes are monotonically damped (the decrements are 
positive), but if the viscosity is low enough, then there are also oscillatory modes, which 
correspond to complex decrements with positive real and nonzero imaginary parts. 

Here the limiting case of infinitely large Prandtl a and Rayleigh R numbers is studied, 
the Grashoff number G = R/o being finite and fixed in value. The problem reduces to analy- 
sis of the spectral boundary-value problem for a fourth-order ordinary differential equa- 
tion which is nonlinear in the spectral parameter, the decrement ~. The problem contains 
as auxiliary parameters the wavenumber ~ and G. For fixed ~ and G, it is easily estab- 
lished that there exists a countable set {~n}n=l of eigenvalues. In this case, the eigen- 
values are all real if G is sufficiently small. When G, as it grows, reaches a definite 
critical value, there appear a series of pairs of complex-conjugate eigennumbers % which, 
as usual, are determined from the appropriate transcendental equation. To analyze the equa- 
tion, the method of one-dimensional perturbations (perturbations of boundary conditions) is 
applied. This method was used by Jeffries [3] in the convection problem. The method leads 
directly to an expansion of the left side of the transcendental equation in partial frac- 
tions, which facilitates study: specificaly, it helps in isolating the roots. 

The minimum values in ~ of the critical Grashoff numbers G n for the appropriate values 
of e and % are determined. These are found separately for the even and odd modes with re- 
spect to the transverse variable. The asymptotes to G n for n § ~ are constructed. It is 
remarkable that even for n = i, the asymptotics yield good accuracy. 

There are grounds for believing that the critical value of the Grashoff number G, = 
729, which results in the first appearance of an oscillatory mode, corresponds to the tran- 
sition of turbulent convection at infinitely large Prandtl numbers [4]. 

i. Problem Statement. The stability spectrum ("spectrum of small oscillations") is 
determined in this case by the boundary-value problem 

(O ~ _ a2)2~ + ~2R0 = _ ~ ( D  2 _ ~2)~; ( 1 . 1 )  

(D 2 - a 2 ) 0  + ~ = --Xe0; ( 1 . 2 )  

= ~ '  = o = o (~ = ~ I ) .  ( i . 3 )  

Here R is the Rayleigh number with a minus sign, so that positive R corresponds to stabil- 
ity; ~2 is the square of the modulus of the horizontal wave vector; D = d/dz; % is the com- 

Rostov-on-Don. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 6, 
pp. 44-50, November-December, 1991. Original article submitted August 31, 1990. 

0021-8944/91/3206-0861512.50 �9 1992 Plenum Publishing Corporation 861 



plex spectral parameter (the sign chosen so that stability corresponds to Re I > 0); r @ 
are the complex amplitudes of the normal oscillations of, respectively, the vertical compon- 
ent of the velocity and the temperature. 

It is well known that for R, o > 0, the spectrum of the boundary-value problem (i.i)- 
(1.3) lies in the right half plane. For sufficiently small R, it is real, but can become 
complex when R increases to attain a definite value which depends on o. When this occurs, 
the real eigenvalues X merge, and with further growth in R are transformed into complex- 
conjugate pairs. We are interested in the case where R + ~, o ~ ~ in such a way that G = 
R/o remains finite and fixed in value. 

We make the substitution ~ + o~ in (1.1)-(1.3). For o + =, we obtain from (1.2) 8 = 
-~/X. Substitution into (l.l),i (1.3) gives the boundary-value problem 

L2~ - -  (aSG/%)~ = - - l L %  L = D s --  ~s; ( 1 . 4 )  

= ~' = 0 (z = ~I) (1.5) 

Because of the invariance of (1.4), (1.5) with respect to mirror syrr~etry z + -z, the 
eigenfunctions and adjoint functions are divided into even and odd functions. It is for 
this reason that we consider the symmetry of the interval with respect to z. It must be 
kept in mind that the critical values of G found here must be multiplied by 16 to obtain 
values for a layer of unit thickness. 

We can find the transit values of G for which oscillatory modes appear (complex-conju- 
gate I pairs) by the criterion of two-fold or greater multiplicity of the eigenvalues I. 
A mere single multiplicity is, however, not enough. If it is brought about by the exist- 
ence of a pair of independent eigenfunctions, then in general, as easily seen from pertur- 
bation theory, both merging eigennumbers are either real along both sides of such values of 
G, or are complex. The generation of complex-conjugate pairs occurs if for the given value 
of G there is a Jordan cell: there appears an adjoint function [5, 6]. 

This difficulty in analyzing (1.4), (1.5) is easily circumvented if we consider the 
even and odd eigenfunctions Separately: it is subsequently shows that for both the class 
of even and odd functions, the corresponding characteristic subspace is always one-dimen- 
sional, and multiplicity can occur only with the appearance of an adjoint function. 

2. The Transcendental Equation. We obtain from (1.4) the characteristic equation 

If the roots are -T-kl,-T-kz: 

(k 2 -- as) s ~- k(k s -- as)-- ~SG/k ~ O. (2.1) 

kl = ~ ~2 _~ ll ' k2 = ~ f  ~2 _~ 12 ' ( 2 . 2 )  

ll.s = (1/2)(--~ ___ V ~s _~ 4~2G/~ 

(s c o r r e s p o n d s  t o  t h e +  s i g n ) .  

For  even  e i g e n f u n c t i o n s ,  we have  r = A c o s h  kzz  + B c o s h  k2z , A, B = c o n s t .  S u b s t i t u t -  
i ng  t h i s  in  ( 1 . 5 )  and e q u a t i n g  t h e  d e t e r m i n a n t  o f  t h e  r e s u l t a n t  s y s t e m  t o  z e r o ,  we o b t a i n  

k l t h k l - - k 2 t h k s  =0, ( 2 . 3 )  

s i n c e ,  as  i s  e a s i l y  v e r i f i e d ,  c o s h  k l " c o s h  k2 ~ 0. 

The odd e i g e n f u n c t i o n  c a s e  i s  c o m p l e t e l y  a n a l o g o u s :  t h e  e i g e n f u n c t i o n s  a r e  r = C s i n h  
k l z  + D s i n h k 2 z ,  C, D t = c o n s t .  I n  p l a c e  o f  ( 2 . 3 ) ,  we f i n d  

k l c t h k l - - k s c t h k  s = 0 .  ( 2 . 4 )  

I t  i s  c l e a r  t h a t  t h e  c h a r a c t e r i s t i c  s u b s p a c e s  a r e  o n e - d i m e n s i o n a l  in  b o t h  p r o b l e m s .  

3. Boundary  C o n d i t i o n s  P e r t u r b a t i o n  Method.  Change o f  one o f  t h e  b o u n d a r y  c o n d i t i o n s  
o f  t h e  b o u n d a r y - v a l u e  p rob l em  f o r  t h e  e i g e n v a l u e s  f o r  an o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  
l e a d s  t o  a o n e - d i m e n s i o n a l  p e r t u r b a t i o n  o f  t h e  o p e r a t o r  f o r  t h i s  p rob l em o r  o f  t h e  a p p r o -  
p r i a t e G r e e n  o p e r a t o r .  I n  t h i s  c a s e ,  t h e  d i s p e r s i o n  e q u a t i o n  o f  t h e  p e r t u r b e d  p rob lem has  
a v e r y  c o n v e n i e n t  r e p r e s e n t a t i o n .  I n  t h e  t h e o r y  o f  s e l f - a d j o i n t  b o u n d a r y - v a l u e  p r o b l e m s ,  
s u c h  an a p p r o a c h  i s  known as  t h e  W e i n s t e i n  method .  In  [ 7 - 9 ] ,  t h e  method o f  o n e - d i m e n s i o n a l  
p e r t u r b a t i o n s  i s  d e v e l o p e d  in  t h e  g e n e r a l ,  n o n s e l f - a d j o i n t  c a s e .  I t  i s  i n t e r e s t i n g  t h a t  t h e  
s p e c i a l  o n e - d i m e n s i o n a l  p e r t u r b a t i o n s  b e i n g  c o n s i d e r e d  t u r n  o u t  t o  be v e r y  u s e f u l  in  t h e  
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study of the unperturbed problem as well: it is helpful to know the response of the system 
being studied to external influences. 

For the problem of convection in a layer, the method leads to a dispersion relation of 
the form first applied in [3], where the results were based on a Fourier transform with 
finite limits. It is also possible to obtain this equation by replacing the hyperbolic 
tangent and cotangent in (2.3), (2.4) by their expansions in partial fractions. We now de- 
rive the dispersion relation by considering (1.4), (1.5) as a perturbation with respect to 
the boundary-value problem with conditions 

u = u " =  0 ( z  = -T-I), (3.1) 

c o r r e s p o n d i n g  t o  a n o n - d e f o r m a b l e  f r e e  b o u n d a r y .  Such  a p e r t u r b a t i o n  i s  o n e - d i m e n s i o n a l  i n  
e a c h  o f  t h e  s u b s p a c e s  f o r  t h e  e v e n  and  odd f u n c t i o n s .  L e t  u s  s t a r t  w i t h  t h e  e v e n  m o d e s .  

We c o n s i d e r  t h e  i n h o m o g e n e o u s  b o u n d a r y - v a l u e  p r o b l e m  f o r  t h e  e q u a t i o n  

L2u = / ( 3 . 2 )  

w i t h  c o n d i t i o n s  ( 3 . 1 ) ,  w h e r e  f ,  u a r e  e v e n  w i t h  r e s p e c t  t o  z .  The f u n c t i o n  f i s  r e p r e s e n t e d  
i n  t h e  f o r m  o f  a F o u r i e r  s e r i e s  

1 

i / ( z ) =  ~ / n c o s ' S n z ,  5 n = ( 2 n - - l ) r t / 2 ,  / , ~ = 2 ~ / ( z ) c o s 6 ~ z d z .  ( 3 . 3 )  
n=l 0 

We seek the solution u also in the form of a Fourier series, thereby determining the Green's 
operator$~ for problem (3.1), (3.2) (Tn = 6~ + a2): 

u(z) = (~ i ) ( z )  = ~ (I~/V~) cos 8~z. ( 3 . 4 )  

Now, from (1.4), (1.5) we infer 

q~ ---- gd( - -  ~tLq) -}- (~2G/~,)q~) + ?/. (3.5) 

Here 7 is a number (the value of the functional on @) 

2 r ! 7 = ?(q$ = --[9~'~(--~,Lfp q - ( a  G/~,)9)] Iz=i, ( 3 . 6 )  

and f is the even solution of the boundary-value problem 

L V = O,/(I)  -?- O,/ ' ( I )  = i.  (3.7) 

S o l v i n g  ( 3 . 7 ) ,  we o b t a i n  (A = ( s i n h  2a  + 2 ~ ) / 2 )  

/(z) = (z sh az ch ~ -- ch ~z sh ~)/A. ( 3 . 8 )  

We r e p r e s e n t  f i n  t h e  f o r m  o f  F o u r i e r  s e r i e s  ( 3 . 3 )  w i t h  c o e f f i c i e n t s  

8~ ch 2 ~5 n 
/n=(__i) n ( 3 . ~ )  

(2~ + sh 2~) 7~ 
Equation (3.5) assumes the form 

= ? [ I  -- ~d(--%L q- =2G/L)I-~. (3.10) 

Substituting (3.10) in (3.6) and using (3.4) and (3.9), we have the dispersion relation for 

V2 ~ ~=1 n -- ~?n--  ~"G/% 8a ch 2a n=l n 

Using the well-known relation 

th ~ ~ 1 

~:i ~n+ ~ 

The dispersion relation takes on the form 

n = ~  ~ G  --  ~ - -  0, H~  = ~W (W - -  ~). " ( 3 . 1 1  ) 

In the above, the standard proofs of convergence and of the validity of termwise series 
differentiation have been omitted. Note that in using the boundary conditions perturbation 
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method, it is necessary to analyze separately those eigenvalues which do not change when 
the problem is perturbed (these are called fixed eigenvalues). It will be shown that in 
this problem, there are no such eigenvalues. We will say that the function f is of non- 
localized distribution, if all of its Fourier coefficients are nonzero in the system of 
eigenfunctions r of the unperturbed problem. Correspondingly, we call T(r a functional n 
of nonlocaized distribution if it is not zero on any of the eigenfunctions r From (3.5), 

it follows that there are fixed eigenvalues if and only if f or T is not of nonlocalized 
distribution. But this is impossible, as is easily seen from (3.6) and (3.9), since r = 

cos 6nZ. 

We turn now to an analysis of (3.11). Let A > 0 be fixed in value. It can be di- 
rectly verified that all Hn(A) which are positive for the given %, are distinct and grow 
monotonically with increasing n. Let n0(A) = min {n: Hn(A) > 0}; for each from the inter- 
vals (Hn a-2, Hn+:a-2), n ~ n0(A), the left hand side of (3.11) monotonically dies out as a 
function of G from +~ to -~ (differentiate the expression: the derivative is negative). 
Thus, (3.11) has a sequence of positive roots Gn(a, A), n = n0(A), n0(%) + i,...: Hn(A) < 
a=Gn(a, A) < Hn+:(A) (and possibly another positive root on (0, Hna-2)). 

It is easy to see that for some A e (0, Yn+:), the function Gn(a , A) attains a maximum 
with respect to A. Computations (the tabulated Gn(a , A)) show that such a point is unique. 
It is clear that this point determines the moment that oscillatory modes appear: if G be- 
comes slightly larger than the maximum value Gn, a pair of real eigenvalues disappears. It 
is of interest to find the minimum value of such a critical number with respect to ~. As a 
result of this we have the problem: find G n (n = I, 2,...) satisfying the condition (8 = 
a 2 ) 

Gn = min max Gn(a ,~) ,  
o>o ~ (3.12) 

and the an, A n for which a minimax is attained. In this case, G l is the value of the first 
Grashoff number for which there is at least one oscillatory mode. 

Everything considered here is done in a completely analogous fashion for the odd modes. 
The dispersion relation has the same form (3.11), except that 6 n = n~. The equalities ana- 
logous to (3.12) determine a sequence of values for G which mark the appearance of new (odd) 
oscillatory modes as G transits these values. 

4. Asymptotics of the Critical Grashoff Numbers. Even Modes. We introduce the func- 
tion f(k) = k tanh k and rewrite (2.3) in the form 

/(k:) =/(ks).  ( 4 . 1 )  

The p r o b l e m  c o n s i s t s  o f  f i n d i n g  t h e  q u a n t i t i e s  ( 3 . 1 2 )  (n = 1, 2 , . . . ) .  The p o i n t s  (O n , A n)  
at which a minimax is attained are critical saddle points of the function Gn(a, A). The 
quantities Gn, On, and A n must satisfy the system of equations (4.1) and 

Okl = / ,  0k2 /,  0~1 = f ,  0k2 ( 4 . 2 )  1' @:) gf  (ks) ~Z' (k:) gs (ks) ~ .  

Note  t h a t  f ' ( k : )  > 0, s i n c e  k :  > 0. T h e r e f o r e  t h e  d e t e r m i n a n t  o f  ( 4 . 2 )  mus t  v a n i s h  

Ok: Ok s Okl Ok s 
oo o~ o~ 6o =0"  ( 4 . 3 )  

We introduce the parameters m, q, p by setting 

' m = (k S -- =s)/k, p = =s/k, q = =~G/~3 

Note that p and q are positive. Because of (2.1), we have for m 

m~q-m--q = O. 

We denote the positive root by m I, and the negative root by m2: 

m~ = ( - - i  + V I q-4@/2, m 2 = (i + V i +4q ) /2 .  

It is easy to see that k 2 is purely imaginary: ks = ik2. In this case 

Taking (4.4)-(4.7) into account, Eqs. (4.3) is reduced to 

(4.4) 

(4 .s )  

(4.6) 

(4.7) 
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l ip + t/q -- 2. (4 .8)  

With the use of (4.4)-(4.8), the first of Eqs. (4.2) can be written as (N = k I tanh k1(l - 

k I tanh kl)) 

2~11~, = p - -  2q. ( 4 . 9 )  

Thus we have the system (4.1), (4.8), and (4.9) for determination of 8n, A n, and Gn. 
From (4.1) and (4.7) we obtain 

k2 = n~ - -  arc tg  (~f(rn 1 zc p)7(m~ - -  p ) t h  kl); ( 4 . 1 0 )  

~, --=- (m 2 - -  p ) -~(n~ - -  arctg ( 1/  (m 1 -!-, p)/(m2 - -  p)  th  k~))2, ' ( 4 .  I 1 )  

where n = i, 2, .... 

In constructing asymptotics, we will assume that p, q, ml, m 2 = O(i); A, ~2 =: O(n2); 
G = O(n4); k I, k2 = O(n) for n + =. This assumption is validated a posteriori: the asymp- 
totic expansion is substantiated with the help of one of the singular variants of the im- 

plicit function theorem. 

By replacing tanh k i by i, Eqs. (4.11) and (6.9) can be rewritten, with exponentially 
small error for n + ~, in the form 

~, = (m s - -  p)-l(n~r - -  a rc tg1 /  (rn: q- p)/(m2 - -  p))2; ( 4 . 1 2 )  

2(m i 2 i- p)  @ p - -  2q = 21/ (rn~ § p)/~,. ( 5 . 1 3 )  

Bearing in mind that mz, m2, and p are expressed in terms of q by (4.6) and (4.8), one 
can treat (4.12), (4.13) as a system of equations which determine q and ~ for a given n = 

= 2 are determined by the use of i, 2 ..... After An, qn are found, the values of Gn, O n a n 
(4.4). 

For limiting values of ml, m2, p, q determined from (4.13) as n § ~, the equation can 
be written as 

(m~ - -  l)(2ra 1 -~ t)(2m~ ~- 3) = 0. ( 4 . 1 4 )  

As a r e s u l t  we f i n d  ml = 1,  m 2 = 2 ,  p = 2 / 3 ,  and  q = 2 .  From ( 4 . 4 )  and  ( 6 . 1 2 )  we d e d u c e  t h e  
asymptotic equalities 

= 3 n ~ 2  ~n 27 
4 , a n = - ~ / ~ ,  G n = - i ~ n 4 n t  (4.15) 

One can  o b t a i n  a s y m p t o t i c  e x p a n s i o n s  f o r  mz, m2, p ,  q i n  p o w e r s  o f  l / n :  

m 1 = t + 2  mlhn-~ ,  m~----m 1 @ 1 ,  ( 4 . 1 6 )  
h = l  

22. p---- - ~ - l -  " pan -~,  q = 2 § qhn-h; 
h = l  h = l  ! 

p~ = 4 1 / 3 / 4 5 ~ ,  f~ = - - 4 V g / 5 ~ ,  "h~ = - 4  f'g/tSrc, ( 4 . 1 7 )  

248 4 V 5  arctg V 5  
P:  = ~ + 45.~ - - - F  2 ' 

qz = --9p~ n L 32/(t5n~), m~2 = --3p2 + 16/(27~2). 

The n u m e r i c a l  v a l u e s  a r e :  qz = - 0 . 5 5 9 4 1 ,  P l  = 0 . 0 5 3 2 5 7 7 ,  m~z = 0 . 1 8 9 8 0 3 3 ,  P2 = 0 . 0 2 9 3 4 6 6 ,  
q2 = - 0 . 0 4 7 9 5 7 5 ,  and  m12 = - 0 . 0 2 7 9 9 7 7 .  

U s i n g  ( 4 . 1 2 )  we f i n d ,  t o  an  a c c u r a c y  o f  0 ( l / n )  f o r  n + 

1/~-~ = ~--2-~(n~ -6 2V515 arctg ~--~). (4,18) 

Formula (4.18) gives reasonable results even for n = I. The values of %n computed from this 
formula are: lz = 5.06(8), A~ = 24.713(707), A s = 59.1655(2), Au = 108.4224(5), and ~5 = 
172.484(8). Here the numbers in parentheses indicate the correct final digits (Table I). 

Odd Modes. The analysis is done in a completely analogous fashion for the odd modes. 
In place of (4.1), we have Eq. (2.4), and in (4.9) we take for N the expression ~ = kz coth 
k~ (i - kz coth kz). Correspondingly in (4.10), (4.11) n must be replaced by n + 1/2. The 
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TABLE 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

t0 

G 

729,1942188 
23526,7788i 
i46200,8065 ~ 
509650,80i3 
13i7901,7i3 
2838099,643 
54005ii,782 
9398526,413 
i5288652,91 
2359052i,74 

t,9968426 
4,i8it270 
6,3965i59 
8,6i51200 

i0,8349t3 
13,055278 
15,275961 
17,496839 
t9,7i7846 
2t,938942 

5,086752i 
24,706872 
59,i65t66 

t08,42472 
i72,48753 
25i,3542i 
345,02502 
453,50006 
576,77940 
7i4,86307 

TABLE 2 

j n O ~ 

1 373,8634460 3,076095~ 

2 4065,791645 5,288i46~ 

3 i7909,79080 7,50560i~ 

4 52684,93200 ~,724920( 

5 i23i15,3i26 II,94504L 

6 247870,0981 i4,16558~ 

k 

i3,020459 

40,086069 

81,944607 

138,60566 

210,07037 

296,33909 

limiting values of the parameters mz, m2, p, q for n + ~, asymptotic formulas (4.15), and 
expressions (4.17) are preserved. In place of (4.18) we obtain 

V ~ =  n~ +-~ i t5 arctg . (4.19) 

The e r r o r  h e r e  i s  a s  b e f o r e :  O ( 1 / n )  f o r  n + ~ .  Of c o u r s e ,  t h i s  f o r m u l a  w o r k s  e v e n  b e t t e r  
t h a n  t h a t  f o r  t h e  e v e n  m o d e s .  F o r  e x a m p l e ,  a c c o r d i n g  t o  ( 4 . 1 9 )  we h a v e  i 1 = 1 3 . 0 4  and  12 = 
4 0 . 0 8 9 .  The c o m p u t e d  v a l u e s  ( T a b l e  2)  a r e  t z  = 1 3 . 0 2 0 4 5 9  and  12 = 4 0 . 0 8 5 0 5 9 .  

5 .  N u m e r i c a l  R e s u l t s .  We w r i t e  Eq. ( 4 . 9 )  i n  t h e  f o r m  

m~ + m~ + ( B - -  t,25)m~ + (B--O,75)m~--B]2 = 0, ( 5 . 1 )  
where 

B = ]/ (m 1 + p)/~, th  k I + (ml + p)(l  - -  th  e k~), kz= ]/)~(m i+p) ,  p = q / ( 2 q - t ) ,  q = m ~ + m  r , ( 5 . 2 )  

By combining these with (4.11), we obtain a system of equations for the even modes. For 
the odd modes, we need only replace tanh by coth in the expressions for B and In, and re- 
place n by n + 0.5 in (4.11). 

System (4.11), (5.1), and (5.2) is solved numerically in the following fashion. Hav- 
0 = ~), we compute B and find ing an approximate value for % n (at worst one can begin with A n 

m z by solving the fourth degree equation (5.1). By using Descartes' law, we establish that 
the last equation has a single positive root, which is determined by Newton's method. Find- 
ing m z, we compute A n according to (4.11) and (5.2), and a n and G n by (4.4). 

The numerical results are shown in Tables i and 2. 

I am very grateful to L. Kh. Belen'kaya for her help in programming and carrying out 
the calculations. 

LITERATURE CITED 

i. A. Pellew and R. V. Southwell, "Maintained convective motion in a fluid heated from 
below," Proc. R. Soc., A176, No. 966 (1940). 

2. G.Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of an Incompressible Fluid 
[in Russian], Nauka, Moscow (1972). 

3. H. Jeffries, "Some cases of instability in fluid motion," Proc. R. Soc. All8, 195 (1928). 

4. R. Krishnamurti, "Some further studies on the transition to turbulent convection," J. 
Fluid Mech., 60, 285 (1973). 

5. N. Dunford and J. T. Schwartz, Linear Operators, Part i, General Theory, Wiley- 
Interscience (1958). 

6. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York (1966). 
7. Yu. S. Barkovskii and V. I. Yudovich, "Inception of Taylor vortices in the case of ro- 

tating cylinders and the spectral properties of one class of boundary-value problems," 
Dokl. Akad. Nauk SSSR, 242, (1978). 

8. Yu. S. Barkovskii and V. I. Yudovich, "Spectral properties of finite-dimensional oper- 
ators and of moment problems," Izv. Sev.-Kafkaz Nauch. Vyssh. Sh. Estestv. Nauki, No. 
4 (1975). 

9. Yu. S. Barkovskii and V. I. Yudovich, "Spectral properties of a class of boundary-value 
problems," Mat. Sb., 114, No. 3 (1981). 

866 


